
Journal of Sound and <ibration (2002) 250(5), 935}950
doi:10.1006/jsvi.2001.3965, available online at http://www.idealibrary.com on

00
FREQUENCY DOMAIN ARX MODEL AND
MULTI-HARMONIC FRF ESTIMATORS
FOR NON-LINEAR DYNAMIC SYSTEMS

D. E. ADAMS

School of Mechanical Engineering, Purdue ;niversity, 1077 Ray =. Herrick ¸aboratories,
=est ¸afayette, IN 47907-1077, ;.S.A. E-mail: deadams@purdue.edu

(Received 11 January 2001, and in ,nal form 7 August 2001)

Non-linear dynamic systems respond at frequencies other than the excitation frequency;
however, standard frequency response function estimators for linear systems do not
accommodate this harmonic distortion. A new multi-harmonic frequency response function
estimator that utilizes discrete frequency models for non-linear systems is introduced here.
The multi-harmonic estimator relates the frequency response at each frequency to the input
and output spectra within a given frequency band in the same way that autoregressive
exogenous input models relate inputs and outputs at particular samples in the time
domain. Overdetermined, least-mean-squares calculations are used to minimize model error
throughout a frequency band rather than at a single frequency as in the corresponding linear
estimators. The resulting multi-harmonic frequency response function models are
non-parametric (e.g., vary with amplitude) when linear functions are used and parametric
when non-linear functions are used. A new sensitive indicator for experimentally
characterizing non-linearity is introduced.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Frequency response is central to experimental linear structural dynamics because it is
minimal in the following sense: it relates inputs and outputs in the steady state at a single
frequency only. Although this single-point relationship is su$cient for describing linear
systems, a more inclusive relationship is required for non-linear systems because they
respond at frequencies other than the excitation frequency. Common frequency response
function (FRF) estimators, H

�
, H

�
, and H

�
, do not accommodate this kind of harmonic

distortion [1]. The goal of frequency domain analysis of non-linear systems is to describe
how the harmonic amplitudes/phases of the response are related to one another and to the
input amplitudes/phases. This research explores a new type of frequency response indicator
for non-linear systems that accommodates multi-harmonic response behavior. The
innovation is in the use of autoregressive exogenous input (ARX), or recursive, models in
the frequency domain.
The most relevant previous research in the area of frequency response for non-linear

structural dynamic systems includes the work of Volterra [2], Schetzen [3, 4], Storer and
Tomlinson [5, 6], Bedrosian and Rice [7], Xu and Rice [8], Vinh and Liu [9],Worden [10],
and others. These researchers have focused primarily on multi-dimensional convolution
and frequency response as means for describing non-linear systems with su$ciently smooth
non-linearities. Nikias and Petropulu [11] also provide a rigorous review of the theory of
higher order spectra and Collis et al. [12] discuss some applications of these spectra.
22-460X/02/100935#16 $35.00/0 � 2002 Elsevier Science Ltd.
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In addition, Rice and Fitzpatrick [13], Bendat [14], Richardson and Singh [15, 16], and
Adams and Allemang [17}20] have developed practical ways to describe non-linear
multiple-input, multiple-ouput systems with smooth and/or discontinuous non-linearities
using "rst order, nominal linear FRFs in conjunction with non-linear generating functions.
The research here directly exploits the notion of a discrete frequency model (DFM),

which was introduced by Adams and Allemang [21]. This model relates the forced response
of a given non-linear system to the input and the output at harmonics of the forcing
frequency. The premise of that work is that the harmonic response at each frequency is
correlated with both the input and the response at (potentially) all of the harmonics. This
idea is used here to develop an approximate, more generalized characterization approach
for non-linear systems subjected to broadband excitations, which produce frequency
interactions and amplitude variations. Non-parametric and parametric ARXmodels will be
used to estimate multi-harmonic FRFs that relate the broadband response at each
frequency to the input at that frequency as well as the response at neighboring frequencies.
Sections 2.1}2.3 review higher order FRFs, the general form of a DFM, and time-domain

ARX models. Then frequency domain ARX models are used in section 2.3 to describe
frequency response relationships in simulations of a low order non-linear system.
Section 2.4 analyzes the experimental data from a real-world non-linear system, and then
conclusions and some discussion of future work are given in section 3.

2. MULTI-HARMONIC FRFs

2.1. HIGHER ORDER FREQUENCY RESPONSE

The basis of second and higher order frequency response analysis is the dynamic Taylor
series, which is used to model input}output relationships in non-linear systems near
nominal, or operating, points of interest. Figure 1 illustrates how di!erent Volterra series
expansions are used to model the system dynamics around two nominal points (i.e.,
* and **) that lie along a speci"c characteristic non-linear function, F

�
(A), where A is the

characteristic co-ordinate. Each Volterra series expansion of the form,

y (t)"y
�
(t)#y

�
(t)#y

�
(t)#2, (1)

expresses the response, y(t), of the (weakly) non-linear system to the input, u(t), as a sum of
the "rst (y

�
(t)), second (y

�
(t)), and higher order dynamic functions. Taylor series expansions
Figure 1. Piecewise non-linear Volterra functional series models near three nominal (operating) points of
interest.
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similarly describe di!erentiable functions as combinations of "rst, second, and higher order
static functions.
Although the coe$cients in Taylor series are static, the terms in the Volterra series are

dynamic and are computed as follows:
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where h

�
(�

�
, �

�
,2, �

�
) is called the nth order Volterra kernel or impulse response function.

The multi-dimensional Fourier transforms of the h
�
(�

�
, �

�
,2, �

�
) are called higher-order

FRFs:
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Equation (5) can be used in conjunction with harmonic probing [9, 10] to obtain the
frequency domain series corresponding to the time series in equation (1). For instance, if the
non-linear Du$ng oscillator,

myK#cyR #ky#�y�"u (t), (6)

is driven by u(t)";
�
ej��

t (a non-physical harmonic input), then the following response can
be found:
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where H
�
(�)"1/(k!m��#j�c) and the H

�
(�

�
, �

�
,2, �

�
) are higher order FRFs

evaluated along the diagonal line q
�
"q

�
"2"q

�
"�

�
in n-dimensional space.

Therefore, the Fourier transform of y(t) for a mono-frequency input can be written in the
form

>(�)"H
�
(�);(�)!�>��

�
3�H�

(�)#3��>��
�
5�H�

(�)#2. (8)

Note that this expression relates the response at a frequency� to the mono-frequency input
spectrum;(�)";

�
�(�!�

�
) (where �(�) is a delta function) and the output at harmonics

of the excitation frequency; the equation is only true for this type of input. For example, the
following sequence of steady state spectral response points can be generated using equation
(8) for u(t)";

�
ej��

t:
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The equality constraints ; (3�
�
)";(5�

�
)"2"0 and >(�

�
/3)">(�

�
/5)"2"0

were inserted into equation (8) to generate this sequence. These equalities only hold for an
input of the form ;

�
ej��

t in the absence of secondary resonances of the subharmonic or
superharmonic type. The important feature in equation (8) is the direct dependence
of forced superharmonic responses on the fundamental component,>

�
(�

�
)"H

�
(�

�
);(�

�
).

The recursive nature of this result anticipates the new technique introduced in
section 2.3.
Although the non-physical harmonic input does provide motivation for the work to

follow, it does not capture the types of distortion that do occur in strongly forced non-linear
systems. The physical harmonic probing input, u(t)";

�
/2 �ej��

t
#e!j�
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t),

will capture these distortions. For this input, the steady state response of the Du$ng
oscillator is di!erent but similar to equation (7),
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response at the (physical) excitation frequency, �
�
, now has a component due to the third

order FRF. Although this component renders the form in equation (8) inappropriate
due to interactions between positive and negative frequency terms in u(t), equation (8)
can still be used to characterize the non-linearity as long as the excitation amplitude is not
too large.

2.2. DISCRETE FREQUENCY MODELS (DFMs)

The DFM introduced in references [21, 22] is a generalization of equation (8) for
single-input, single-output (SISO) systems subjected to multi-frequency inputs. More
speci"cally, DFMs take the form

>(�)+B(�);(�)# �
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where r and s are contained in the set of real integers (R
�
), p

�
, p

�
, q

�
, and q

�
are integers

indexed by r and s, B(�) accounts for the nominal linear frequency response, and the A
�� �
(�)

terms and f
�� �
( ) ) functions accommodate superharmonic, subharmonic, and combination

forced (not resonant) responses. Like equation (8), equation (14) indicates that the
non-linear frequency response at a certain frequency depends on both the input at that
frequency and the various response harmonics around that frequency. Figure 2 illustrates
the DFM concept for a simple non-linear system.
Note that the model in equation (14) is valid for non-linear systems that exhibit roughly

steady state responses to stationary inputs. This is because the model is based on the
assumption of weak non-linearity [23]. For instance, systems which exhibit chaotic



Figure 2. Illustration of internal feedback in a non-linear system with superharmonic response components.
DFMs relate the response at the excitation frequency to the input and harmonic response components.
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dynamics do not adhere to this model because periodic inputs to these kinds of systems
often produce non-periodic, broadband responses [24].

2.3. TIME-DOMAIN ARX MODELS

ARX models (or in"nite impulse response "lters) [25, 26] have traditionally been used to
describe dynamic systems as they evolve in time. Linear models of this type often take the
following form for SISO systems:

y(k)"a
�
y(k!1)#a

�
y(k!2)#a

�
y(k!3)#2#a

�
y(k!n)

#b
�
u(k!1)#b

�
u(k!2)#b

�
u(k!3)#2#b

�
u(k!m). (15)

This equation expresses the output at the kth sample as a linear function of the previous
m input samples and the previous n output samples. The b

�
and a

�
coe$cients de"ne the

exogenous input portions and autoregressive portions, respectively, of the model. The order
of the system is n, the largest delay in the autoregressive portion. Moving average terms can
also be included as in ARMAX models by introducing an additional variable, e(k), for
instance, whereas non-linearity can be incorporated by permitting non-linear functions of
the ARMA terms (i.e., NARMAX [27]).
In any typical experimental system identi"cation approach using ARX models, equation

(15) is used to search for the correlation between the input and output data, u(t) and y(t) with
t"k�t for integer k'0. This correlation backward in time is what allows dynamic systems
to evolve. Note that ARX models for causal systems by necessity have no ARX terms that
look into the future (e.g., a

��
y(k#1), a

��
"0). The ARX coe$cients are found by

minimizing some objective function (e.g., sum of the squared error) associated with how well
the model in equation (15) describes the measured data. For instance, if y(k) denotes an
N�1 vector of output measurements leading up to sample k,

y	(k)"(y(k) y(k!1)2 y(k!N#1))1�N, (16)

where N is the number of independent measurements, u (k!1) denotes an N�1 vector of
input measurements,

u	(k!1)"(u(k!1) u(k!2)2 y(k!N))1�N, (17)

and p denotes the (m#n)�1 column vector of ARX coe$cients,
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p"(a
�
a
�2a

�
b
�
b
�2b

�
)	, then the error in the model for these samples is

e(k)"y(k)

![y(k!1) y(k!2)2y(k!n) u(k!1) u(k!2)2u(k!m)]N�(m#n)p

"Ap (18)

and the optimum set of ARX coe$cients (i.e., the ones that minimize the sum of the
squared error, e(k) ) e(k), for N'm#n) are given by the pseudo-inverse solution, p; , to the
overdetermined equation, y(k)"Ap:

p;"A�y(k)"(A	A)��A	y(k). (19)

The pseudo-inverse of the measurement matrix is denoted with a � here. This solution
forces the error, e(k), from measurement to be uncorrelated (i.e., normal distribution), which
is appropriate assuming that the model structure is adequate for capturing the dynamics in
the measured data. This is the same procedure that will be used in what follows except that
the proposed ARX model resides in the frequency domain rather than in the time domain.
Note that selecting the model order, n, and the number of delays on the input, m, can often
be the most challenging task in developing an accurate ARX model.
Although equation (15) is similar to equations (8) and (14), it di!ers in two essential ways.

First, time-domain ARX models of causal non-linear systems only look backward in time,
whereas frequency domain models look backward and forward in frequency. This
dual-sided ARX nature of the frequency domain model, equation (14), can be attributed to
an implicit time variance (multiple time scale) due to the non-linearity. In other words, the
di!erential nature of the frequency domain analog of the ARX model in equation (15)
produces implicit variations with time via the Fourier transform property,
F[tf (t)]�jdF(�)/d�. Time-varying coe$cients in the time domain thus result in di!erential
terms in the frequency domain.
Second, time-domain ARX models of stationary causal non-linear systems have "xed

coe$cients, whereas the frequency domain models in equations (8) and (14) have coe$cients
that vary with frequency. In spite of this di!erence, it seems reasonable to present the
proposed model in the ARX context because the coe$cients at each frequency are "xed in
the steady state.

2.4. FREQUENCY DOMAIN ARX MODELS

The proposed non-linear frequency response approach uses ARXmodels in the frequency
domain to "nd FRF-like quantities, which can be used to characterize and identify
non-linearity. The proposed ARX model is of the form

>(k)"B(k);(k)# �
r, s3R

�

A
���
(k) f

����>�
p
�
q
�

k�, >�
p
�
q
�

k��, (20)

where k, r, s, (p
�
/q

�
) k, and (p

�
/q

�
) k are contained in R

�
, k is simply the frequency counter,

�"k��, and B(k) and A
���
(k) are complex response coe$cients. One term is included to

account for the nominal linear dynamics, B(k);(k), and an autoregressive (AR) series is
included to account for the non-linear multi-harmonic nature of the response spectrum,
>(k��). The procedure used to "nd the coe$cients in this model is identical to the one used
in equation (19) to "nd the coe$cients in the time-domain ARX model.
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2.4.1. Zeroth order ARX FRF estimator

To illustrate the use, meaning, and implications of equation (20), consider the Du$ng
oscillator, equation (6), with the coe$cients given in Table 1. The results to follow have been
simulated using a fourth order, Dormand-Prince numerical integration scheme with a "xed
size 0)01 s time step. 2�� (131, 072) length time histories were simulated for broadband
random inputs with 1 and 5 N r.m.s. and 200 spectral averages with 60% overlap and
a Hanning window were used to obtain FRF estimates. Standard H

�
FRF estimators,

HK
�
(�)"G

	

(�)/G




(�), whereG

	

(�) and G




(�) are cross-power and auto-power spectra

[28], are calculated and compared with the multi-harmonic ARX FRF coe$cients from
equation (20).
The results from a standard pseudo-inverse spectral averaging procedure for the zeroth

order frequency domain ARX model,

>(k)"B(k);(k), (21)

are shown in Figure 3 along with the corresponding H
�
estimates for the linear

(�"0 N/m�) and non-linear (�"le8 N/m�) systems for 1 and 5 N r.m.s. inputs. The "gure
shows that the zeroth order ARX model is equivalent to the standard linear FRF
(impedance) model and the exogenous coe$cient, B(k), is equivalent to the H

�
FRF
Figure 3. Linear FRF H
�
estimate and frequency domain ARX coe$cients for zeroth order model (B):==,

HK
�
(�) for linear systems; } }},HK

�
(�) for non-linear system with 1)0 N r.m.s. input; .....,HK

�
(�) for non-linear system

with 5)0 N r.m.s. input;�, B(k) for linear system;�, B(k) for non-linear system with 1)0 N r.m.s. input;�, B(k) for
non-linear system with 5)0 N r.m.s. input. Note that the zeroth order estimators are equivalent to H

�
FRF

estimators at a single frequency.

TABLE 1

System and simulation parameters for Du.ng oscillator

�t (s) Nyquist Frequency (Hz) m (kg) c (N s/m) k (N/m) � (N/m�)

0)01 50 1 10 1000 1�10
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estimates. No multi-harmonic frequency response behavior is accommodated by this
model.

2.4.2. ¸ow order ARX model

The results of using the following "rst order frequency domain ARX model,

>(k)"B(k);(k)#A
�
(k)>(k!1)#A

��
(k)>(k#1), (22)

referred to as (B, A
�
, A

��
), to describe the Du$ng oscillator are shown in Figures 4}6 along

with the corresponding H
�
estimates for the linear (�"0 N/m�) and non-linear

(�"le8 N/m�) systems for 1 and 5 N r.m.s. inputs. The only frequency content in Figure 4 is
at the modal frequency, �

�
"2��5 Hz, which is indicative of the linear frequency response

behavior. In Figures 5 and 6, frequency content away from the nominal resonant frequency
indicates that there are non-linear intra-frequency interactions that are only accounted for
in the multi-harmonic ARX frequency response coe$cients in equation (22). Also note that
the frequency content in the ARX coe$cients in Figure 6 is skewed towards higher
frequencies because the input has a higher r.m.s. amplitude in this case.
In order to further interpret these results, recall that the ordinary coherence, C(�),

between an input, ;(�), and output, >(�), is given by

C(�)"
	G

	

(�) 	�

	G



(�) 	 	G

		
(�) 	
, (23)

where G
	

(�) is the cross-power spectrum and G




(�) (G

		
(�)) is the input (output)

auto-power spectrum [28]. Figure 7 shows HK
�
for the linear and non-linear system with

a 1 N r.m.s. input, one minus the associated ARX coe$cients (left), and the coherence
function (right). Note that when 	A

�
(k) 	 and 	A

��
(k) 	 are subtracted from unity, &&enhanced''

coherence functions are created. They are enhanced in the sense that they are more sensitive
to non-linearity and other sources of correlated inputs (e.g., physically correlated inputs,
signal processing leakage) than coherence. Figure 8 shows similar results for the 5 N r.m.s.
Figure 4. H
�
FRF estimates and frequency domain ARX coe$cients for "rst order model (B, A

�
, A

��
). Linear

systemwith:==,HK
�
(�);�, B(k);�,A

�
(k);�,A

��
(k). Note the recurring FRF ARX coe$cient shape indicating

no correlation with frequency in components of frequency response.



Figure 5. H
�
FRF estimates and frequency domain ARX coe$cients for "rst order model (B, A

�
, A

��
):==,

HK
�
(�) for linear system; } } },HK

�
(�) for non-linear system with 5 N r.m.s. input;�, B(k);�, A

�
(k);�,A

��
(k). Note

the additional frequency content in the FRF ARX coe$cients indicating correlation with frequency in frequency
response.

Figure 6. H
�
FRF estimates and frequency domain ARX coe$cients for "rst order model (B, A

�
, A

��
):==,

HK
�
(�) for linear system; } } }, HK

�
(�) for non-linear system with 5 N r.m.s. input; �, B(k); �, A

�
(k); �, A

��
(k).

Note the additional frequency content in the FRF ARX coe$cients and the spectral location of these
components.
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input. The ARX coe$cients are slightly more sensitive than coherence to leakage and
system non-linearity in this case as well.
Since ordinary coherence functions and the proposed non-linear indicators, 1!	A

�
(k) 	

and 1! 	A
��
(k) 	, can be less than one even when the system is linear due to correlated

inputs or signal processing errors (e.g., leakage), the results for a purely linear system must
also be examined. Figure 9 shows (top) the frequency response function estimate, HK

�
, and

the exogenous coe$cient, B(k), as well as (bottom) the coherence function and indicators,



Figure 7. H
�
FRF estimate, frequency domain ARX coe$cients (B, A

�
, A

��
) and ordinary coherence functions

for non-linear system with 1 N r.m.s. input: (a)==, HK
�
(�);�, B(k);�, 1!	A

�
(k) 	; �, 1!	A

��
(k) 	; (b) ���,

HK
�
(�); ) ) ) ), C(�).

Figure 8. H
�
FRF estimate, frequency domain ARX coe$cients (B, A

�
, A

��
), and ordinary coherence functions

for non-linear system with 5 N r.m.s. input: (a)==, HK
�
(�);�, B(k);�, 1!	A

�
(k) 	; �, 1!	A

��
(k) 	; (b) ���,

HK
�
(�); ) ) ) ), C(�).

944 D. E. ADAMS
1!	A
�
(k) 	 and 1!	A

��
(k) 	 (note the scale), for the linear system. The coherence only

drops near the resonance because of leakage in the numerical Fourier transform; however,
the proposed indicators are much more sensitive to the e!ects of leakage. This is because
ARX indicators take into account biased errors that are correlated across a frequency range
rather than coherence between an input and output at a single frequency.



Figure 9. H
�
FRF estimate, frequency domain ARX coe$cients B(k), and ordinary coherence functions for

a linear system with 1 N r.m.s. input: (a) } } }, HK
�
(�); �, B(k); (b) �, 1!	A

�
(k) 	; �, 1!	A

��
(k) 	; ) ) ) ), C(�).

Figure 10. H
�
FRF estimates and ARX coe$cients for fourth order model (B, A

�
, A

�
, A

�
, A

�
, A

��
, A

��
,

A
��
, A

��
): (a)==, linear systemHK

�
(�);�, B(k);�,A

�
(k);�,A

�
(k);#, A

�
(k);�, A

�
(k); *, A

��
(k); 
, A

��
(k);�,

A
��
(k); �, A

��
(k), linear system; (b)==, linear system HK

�
(�); } } }, non-linear system HK

�
(�) with 5 N r.m.s.

input. Note the grouping of linear versus non-linear coe$cients.
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2.4.3. High order ARX model

The results of using the following fourth order frequency domain ARX model,

>(k)"B(k);(k)#A
�
(k)>(k!4)#A

�
(k)>(k!3)#A

�
(k)>(k!2)#A

�
(k)>(k!1)

#A
��
(k)>(k#4)#A

��
(k)>(k#3)#A

��
(k)>(k#2)#A

��
(k)>(k#1), (24)

referred to as (B, A
�
, A

�
, A

�
, A

�
, A

��
, A

��
, A

��
, A

��
), to describe the single degree-of-

freedom non-linear Du$ng oscillator are shown in Figure 10 along with the corresponding



946 D. E. ADAMS
H
�
estimates for the linear (�"0 N/m�) and non-linear (�"1e8 N/m�) systems for a 5 N

r.m.s. input. Note that the ARX coe$cients for the linear system always re#ect the same
linear input}output relationship; however, the coe$cients other than B(k) in the non-linear
case assume large, nearly constant and distinct values. In e!ect, intra-frequency correlations
dominate as the non-linearity becomes more severe.

2.4.4. Harmonic NARX models

All of the ARX models presented in sections 2.4.1}2.4.3 were linear and, therefore,
non-parametric in nature. In other words, the coe$cients varied as a function of the r.m.s.
input amplitude. This is because for non-linear systems, non-linear functions must be used
in order to capture variations with input and output amplitudes (refer to equation (20) or
equation (8)). For example, the following expression might be used to capture these kinds of
non-linear variations in the non-linear ARX (NARX) coe$cients with amplitude:

>(k)"B(k);(k)#A
�
(k)>��

k

3� . (25)

Figure 11 shows (right) two sets of zeroth order ARX coe$cients (B(k), magnitude and
phase) for this model when two di!erent r.m.s. input levels (1)0, 1)4 N) are used, and (left) the
corresponding ARX coe$cients for the linear "rst order model in equation (22). The true
value of H

�
(�) is also given for reference. Note that the zeroth order AR coe$cient, B(k), is

approximately the same for both input amplitudes, whereas the corresponding coe$cient
for the linear model is not the same. Thus, this model has captured some of the variations
with input amplitude due to the non-linearity. As the input amplitude grows, however, even
this NARX model will eventually show input dependence because it does not include
non-linear terms that account for combination frequencies other than the third order. More
Figure 11. H
�
FRF estimate and frequency domain ARX coe$cient B(k) from NARX model: (a)==, HK �(�);�, B(k) for 1 N r.m.s. input;�, B(k) for 1)4 N r.m.s. input for linear "rst order frequency domain ARX; (b) - - - - -,

HK
�
(�); �, �, B(k) for 1 N r.m.s. input; �, B(k) for 1)4 N r.m.s. input for non-linear ARX model.



Figure 12. Experimental electrodynamic shaker and "xture set-up for examining the frequency domain ARX
FRF coe$cients.
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sophisticated NARX models would have to be chosen in order to track the amplitude
dependencies associated with these frequencies.
Figure 11 demonstrates an interesting point of application for these non-linear system

identi"cation frequency domain NARX models: even though the nominal linear FRF
magnitude is not captured adequately by, for instance, the "rst order model in equation (22),
the phase is well identi"ed. Therefore, in applying frequency domain NARX or NARMAX
models to non-linear systems, it is important to include separate criteria for phase
comparisons between di!erent models in order to assess good model "t in general.

2.5. EXPERIMENTAL FREQUENCY DOMAIN ARX MODELS

Figure 12 shows an experimental electrodynamic shaker set-up for examining the uses of
frequency domain ARX models in non-linear structural dynamic system characterization
and identi"cation. A "xture and test specimen is shown with necessary instrumentation
including four piezoelectric accelerometers and a 16 channel Agilent VXI data acquisition
front-end with PC. Tests were conducted to characterize the internal dynamics of the
electrodynamic shaker with and without the "xture and specimen installed. A broadband
voltage input (200}2000 Hz) was supplied to the shaker and the accelerometer voltage on
the shaker table was measured. Two hundred spectral averages with 55% overlap
processing were used to estimate the H

�
FRF estimate, ARX model coe$cients, and

ordinary coherence functions (equation (23)).
Figure 13 shows the magnitudes of the H

�
FRF estimate and ARX coe$cients for a "rst

order model, (B, A
�
, A

��
). Note that the ARX coe$cientsA

�
and A

��
are small everywhere

except below 200 Hz, near the shaker resonance at 1500 Hz, and as the frequency
approaches 2000 Hz. The B(k) coe$cient is approximately equal toHK

�
(�) for all k except in

these frequency ranges. Furthermore, these frequency ranges are precisely where the shaker
is either not responding due to insu$cient excitation or there is signal processing leakage.
In other words, the two AR coe$cients in the frequency domain ARX model seem to
indicate coherence between the input and output (i.e., degree of linear correlation) and the
MA coe$cient indicates the nominal linear frequency responses (H

�
). Figure 14 shows that

when the magnitude of the AR coe$cients are subtracted from one (left), they exhibit the
same signature as the ordinary coherence function (right). Note that the ARX coe$cients
are more sensitive than coherence to leakage near 1500 Hz.



Figure 13. H
�
FRF estimate and frequency domain ARX coe$cients for "rst order model (B, A

�
, A

��
) of

electrodynamic shaker "xture: - - - - -, HK
�
(�); �, B(k); �, A

�
(k); �, A

��
(k).

Figure 14. H
�
FRF estimate, frequency domain ARX coe$cients (B,A

�
,A

��
), and ordinary coherence functions

for electrodynamic shaker "xture: (a) - - - - -, HK
�
(�);�, B(k);�, 1!	A

�
(k)	;�, 1!	A

��
(k)	; (b) - - - - -, HK

�
(�); ) ) ) ),

C(�).
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3. CONCLUSIONS

Standard FRF estimators for linear systems capture input}output relationships at
a single frequency only. Although this approach is adequate for linear system, non-linear
systems exhibit correlation in frequency that can only be captured using multi-harmonic
FRF estimators. Frequency domain ARX models, based on higher order FRFs and
the concept of DFMs, can be used to estimate multi-harmonic frequency response
relationships, which can then be used to characterize and potentially model forced
non-linear systems. Each type of linear and non-linear ARX di!erencing term provides
di!erent FRF estimates that describe di!erent types of non-linear behavior. Linear ARX
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models are non-parametric in nature whereas non-linear ARX models are parametric,
having been shown to capture some of the amplitude dependence common in non-linear
input}output systems. ARX coe$cients, especially those from higher order models, have
also been shown to be more sensitive metrics of non-linearity than ordinary spectral
coherence functions.
Weighted least squares is being explored as a means to develop other classes of FRFs for

non-linear systems from ARX frequency domain models. In addition, methods for using the
proposed model as a means for analysis are also being examined. Numerical issues
associated with the broad experimental application of this technique are also being
addressed.
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APPENDIX A: NOMENCLATURE

FRF(s) frequency response function(s)
ARX autoregressive exogenous input
DFM(s) discrete frequency model(s)
y
�
(t) nth order non-linear Volterra solution component

h
�
(�

�
, �

�
,2, �

�
) nth order Volterra kernel

H
�
(�

�
,�

�
,2,�

�
) Fourier transform nth order Volterra kernel

u(t), y(t) input and output time histories
;(�), >(�) Fourier transforms of input and output respectively
B(�) frequency response coe$cient of ;(� in discrete frequency model)
A

�� �
(�) output spectrum coe$cients in discrete frequency model

f
���
( ) ) functions of harmonic elements of response spectra

a
�
(k) autoregressive (AR) coe$cients in time-domain ARX model

b
�
(k) exogenous (X) coe$cients in time-domain ARX model

n maximum autoregressive delay
m maximum exogenous input delay
F[ f (t)] Fourier transform of f (t)
>(k) response spectrum evaluated at k��
B(k) coe$cient of ;(k) in frequency domain ARX model
R

�
set of real integers

A
�� �
(k) frequency domain coe$cients of autoregressive terms

f
���

functions of harmonic elements of response spectra
HK

�
(�) H

�
estimate of frequency response function

G
	

(�) cross-power spectrum between input and output

G



(�) auto-power spectrum of input

C(�) ordinary coherence function between input ;(�) and output >(�)
	 ) 	 modulus of complex number
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